115(Sc)

UG-II/Math.-III(G)/Supple/20

2020

MATHEMATICS

[GENERAL]

Paper: III

[SUPPLEMENTARY]

Full Marks: 100

Time: 3 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Symbols have their usual meanings.

GROUP-A

(Linear Programming and Game Theory)

[Marks : 50]

1. Answer any **four** questions:

 $1\times4=4$

- a) What is a balanced transportation problem?
- b) Define two person zero-sum game.
- c) Is the union of two convex sets a convex set?

 Justify your answer.
- d) Give an example of a convex set that has no extreme point.
- e) Express (7, 11) as a linear combination of $\alpha = (2, 3)$ and $\beta = (3, 5)$.

[Turn over]

- f) Define a non-degenerate basic feasible solution.
- 2. Answer any **six** questions:

 $2 \times 6 = 12$

a) Find the extreme points, if any, of the set

$$S = \{(x, y) | x^2 + y^2 \le 25\}.$$

- b) Prove that a hyperplane is a convex set.
- c) Show that (3, 0, 2), (7, 0, 9) and (4, 1, 2) form a basis in E³.
- d) Show that the vectors (1, 2, 3) and (4, -2, 7) are linearly independent.
- e) Prove that $\max_{i} \min_{j} a_{ij} \le \min_{j} \max_{i} a_{ij}$.
- f) Construct the dual of the following L.P.P.

Maximize
$$Z = 3x_1 + 4x_2$$

subject to $x_1 + x_2 \le 12$,
 $2x_1 + 3x_2 \le 21$,
 $x_1 \le 8$, $x_2 \le 6$, x_1 , $x_2 \ge 0$.

g) In a game with the 2×2 pay-off matrix

a	b
С	d

where a < d < b < c, show that there is no saddle point.

- h) If an LPP has two feasible solutions, prove that it has an infinite number of solutions.
- i) Is an assignment problem a transportation problem? Justify.
- 3. Answer any **four** questions: $6 \times 4 = 24$
 - a) Apply simplex method to solve the L.P.P.:

Maximize
$$Z = 2x_1 - 3x_2$$

subject to $2x_1 + 5x_2 \ge 10$,
 $3x_1 + 8x_2 \le 24$,
 $x_1, x_2 \ge 0$.

b) Use duality to solve the L.P.P.:

Minimize
$$Z = 3x_1 + x_2$$

subject to $2x_1 + 3x_2 \ge 2$,
 $x_1 + x_2 \ge 1$,
 $x_1, x_2 \ge 0$.

c) Solve the following L.P.P graphically:

Maximize
$$Z = 2x + 5y$$

subject to $0 \le x \le 4$,
 $0 \le y \le 3$,
 $x + y \le 6$.

- d) Show that all three of the basic solutions of the system $x_1+2x_2+3x_3=6$, $2x_1+x_2+4x_3=4$ exist and they are $\left(0,\frac{12}{5},\frac{2}{5}\right)$, $\left(-6,0,4\right)$ and $\left(\frac{2}{3},\frac{8}{3},0\right)$.
- e) Find the optimal assignments to find the minimum cost for the cost matrix:

	I	II	III	IV	V
A	6	5	8	11	16
В	1	13	16	1	10
C	16	11	8	8	8
D	9	14	12	10	16
E	10	13	11	8	16

f) Solve graphically or otherwise the game whose pay-off matrix is:

			В		
		\mathbf{B}_{1}	B_{2}	\mathbf{B}_{3}	\mathbf{B}_4
	\mathbf{A}_{1}	8	15	-4	-2
A	A_2	19	15	17	16
	A_3	8 19 0	20	15	5

4. Answer any **one** question:

- $10 \times 1 = 10$
- a) i) Solve the following transportation problem:

	$\mathbf{D}_{_{1}}$	D_2	D_3	D_4	$\mathbf{a}_{_{\mathbf{i}}}$
O_1	10	7	3	6	3
O_2	1	6	8	3	5
O_3	7	4	5	3	7
\mathbf{b}_{j}	3	2	6	4	

ii) Use Charnes Big M-method to solve the L.P.P.:

Maximize
$$Z = x_1 + 5x_2$$

subject to
$$3x_1 + 4x_2 \le 6$$
,

$$x_1 + 3x_2 \ge 3,$$

$$x_1, x_2 \ge 0.$$
 6+4=10

b) i) Use two-phase method to solve the L.P.P.:

Maximize
$$Z = 2x_1 + x_2 + x_3$$

[5]

subject to
$$4x_1 + 6x_2 + 3x_3 \le 8$$
,

$$3x_1 - 6x_2 - 4x_3 \le 1$$
,

$$2x_1 + 3x_2 - 5x_3 \ge 4$$
,

$$x_1, x_2, x_3 \ge 0$$
.

115(Sc)

[Turn over]

ii) Reduce the feasible solution $x_1=2$, $x_2=1$, $x_3=1$ of the system of equations

$$x_1 + 4x_2 - x_3 = 5$$

$$2x_1 + 3x_2 + x_3 = 8$$

to a basic feasible solution. 6+4=10

GROUP-B

(Probability Theory)

[Marks : 30]

5. Answer any **four** questions:

- $1\times4=4$
- a) State classical definition of probability.
- b) Prove that $P(A^c)=1-P(A)$.
- c) Define mean of a distribution.
- d) State Bayes theorem.
- e) When two events are said to be stochastically independent?
- f) Define random variable.
- 6. Answer any **four** questions:

 $2 \times 4 = 8$

a) Find the mean and variance of a random variable that follows Poisson distribution.

115(Sc)

[6]

- b) Let X be a bionomially distributed random variable with its parameters n and p. Assuming n fixed, find the value of p for which var(X) is maximum.
- c) Verify that the following is a distribution function

$$F(x) = \begin{cases} 0, & x < -a \\ \frac{1}{2} \left(\frac{x}{a} + 1 \right), & -a \le x \le a. \\ 1, & x > a. \end{cases}$$

- d) Find the mathematical expectation of the sum of points on throwing a dice k-times.
- e) If the events A and B are independent, then prove that A^c and B^c are also independent.
- f) Find the probability of getting at least one 'head' in two throws of a unbiased coin.
- 7. Answer any **three** questions: $6 \times 3 = 18$
 - a) State and prove Baye's theorem.
 - b) An user contains n tickets, numbered 1, 2, ..., n tickets are drawn successively one by one without replacement. If the r-th ticket appears at r-th drawing, then we get a match. Find the probability of at least one match.

- c) If $X \sim N(0, 1)$, then find the density function of e^{x} .
- d) State and prove the approximation of binomial distribution by Poisson distribution.
- e) Determine the value of k, such that the function f(x) defined by

$$f(x) = \begin{cases} kx(1-x), & 0 < x < 1 \\ 0, & \text{elsewhere} \end{cases}$$

is a probability density function. Then find the

value of
$$P\left(X > \frac{1}{2}\right)$$
. $3+3=6$

GROUP-C

(Statistics)

[Marks : 20]

- 8. Answer any **four** questions: $1 \times 4 = 4$
 - Distinguish between the positive and negative skewness.
 - b) What is the main difference between absolute and relative measures of dispersion?
 - c) What do you mean by 'root mean-square deviation'?

115(Sc) [7] [Turn over]

115(Sc) [8]

- d) Give an example of a distribution which have same mean, medium and mode.
- e) What is correlation co-efficient?
- f) What do you mean by 'regression line'?
- 9. Answer any **three** questions: $2 \times 3 = 6$
 - a) In a partially destroyed laboratory record of an analysis of correlation data, the following results only are legible: Variance of X=9, Regression lines:

What was the correlation co-efficient between X and Y?

- b) If one of the regression co-efficient is greater than unity, prove that the other must be less than unity.
- Set $X_1, X_2, ..., X_n$ are random sample of size n. Prove that the means of the sample mean is equal to the population mean.
- d) Prove that the sum of the squares of the deviations of a set of values is minimum when taken about mean.

- e) The first three moments of a distribution about 2 are 1, 16 and 40 respectively. Examine the skewness of the distribution.
- 10. Answer any **two** questions:

 $5 \times 2 = 10$

a) Calculate the standard deviation for the following table giving age-distribution of 542 members:

Age in years:	20-30	30-40	40-50	50-60	60-70	70-80	80-90
No. of members:	3	61	132	153	140	51	2

b) For the two frequency distributions given below, the mean calculated from the first is 25.4 and from the second is 32.5.

Class	Distribution–I Frequency	Distribution–II Frequency
10-20	20	4
20-30	15	8
30-40	10	4
40-50	X	2x
50-60	у	у

Find the values of x and y.

c) Calculate the co-efficient of correlation from the following data:

X:	1	2	3	4	5	6	7	8	9
Y:	9	8	10	12	11	13	14	16	15